Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(6): 1291-1300, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723393

RESUMO

Understanding the details of a protein folding mechanism can be a challenging and complex task. One system with an interesting folding behavior is the α-spectrin domain, where the R15 folds three-orders of magnitude faster than its homologues R16 and R17, despite having similar structures. The molecular origins that explain these folding rate differences remain unclear, but our previous work revealed that a combined effect produced by non-native interactions could be a reasonable cause for these differences. In this study, we explore further the folding process by identifying the molecular paths, metastable states, and the collective motions that lead these unfolded proteins to their native state conformation. Our results uncovered the differences between the folding pathways for the wild-type R15 and R16 and an R16 mutant. The metastable ensembles that speed down the folding were identified using an energy landscape visualization method (ELViM). These ensembles correspond to similar experimentally reported configurations. Our observations indicate that the non-native interactions are also associated with secondary structure misdocking. This computational methodology can be used as a fast, straightforward protocol for shedding light on systems with unclear folding or conformational traps.


Assuntos
Dobramento de Proteína , Espectrina , Espectrina/química , Cinética , Termodinâmica , Fenômenos Físicos
2.
Curr Opin Struct Biol ; 77: 102498, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410222

RESUMO

Many important protein functions are carried out through proton-coupled conformational dynamics. Thus, the ability to accurately model protonation states dynamically has wide-ranging implications. Over the past two decades, two main types of constant pH methods (discrete and continuous) have been developed to enable proton-coupled molecular dynamics (MD) simulations. In this short review, we discuss the current status of the development and highlight recent applications that have advanced our understanding of protein structure-function relationships. We conclude the review by outlining the remaining challenges in the method development and projecting important areas for future applications.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Concentração de Íons de Hidrogênio , Proteínas/química , Conformação Molecular
3.
J Chem Theory Comput ; 18(12): 7510-7527, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36377980

RESUMO

Constant pH molecular dynamics (MD) simulations sample protonation states on the fly according to the conformational environment and user specified pH conditions; however, the current accuracy is limited due to the use of implicit-solvent models or a hybrid solvent scheme. Here, we report the first GPU-accelerated implementation, parametrization, and validation of the all-atom continuous constant pH MD (CpHMD) method with particle-mesh Ewald (PME) electrostatics in the Amber22 pmemd.cuda engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated the PME-CpHMD method using the asynchronous pH replica-exchange titration simulations with the c22 force field for six benchmark proteins, including BBL, hen egg white lysozyme (HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease A (RNaseA), and human muscle creatine kinase (HMCK). The root-mean-square deviation from the experimental pKa's of Asp, Glu, His, and Cys is 0.76 pH units, and the Pearson's correlation coefficient for the pKa shifts with respect to model values is 0.80. We demonstrated that a finite-size correction or much enlarged simulation box size can remove a systematic error of the calculated pKa's and improve agreement with experiment. Importantly, the simulations captured the relevant biology in several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in HEWL and the coupled residues Asp19/Asp21 in SNase, the large pKa upshift of the deeply buried catalytic Asp26 in thioredoxin, and the large pKa downshift of the deeply buried catalytic Cys283 in HMCK. We anticipate that PME-CpHMD will offer proper pH control to improve the accuracies of MD simulations and enable mechanistic studies of proton-coupled dynamical processes that are ubiquitous in biology but remain poorly understood due to the lack of experimental tools and limitation of current MD simulations.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Software , Humanos , Concentração de Íons de Hidrogênio , Prótons , Eletricidade Estática , Proteínas/química
4.
Biophys J ; 114(1): 65-75, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320697

RESUMO

The importance of charge-charge interactions in the thermal stability of proteins is widely known. pH and ionic strength play a crucial role in these electrostatic interactions, as well as in the arrangement of ionizable residues in each protein-folding stage. In this study, two coarse-grained models were used to evaluate the effect of pH and salt concentration on the thermal stability of a protein G variant (1PGB-QDD), which was chosen due to the quantity of experimental data exploring these effects on its stability. One of these coarse-grained models, the TKSA, calculates the electrostatic free energy of the protein in the native state via the Tanford-Kirkwood approach for each residue. The other one, CpHMD-SBM, uses a Coulomb screening potential in addition to the structure-based model Cα. Both models simulate the system in constant pH. The comparison between the experimental stability analysis and the computational results obtained by these simple models showed a good agreement. Through the TKSA method, the role of each charged residue in the protein's thermal stability was inferred. Using CpHMD-SBM, it was possible to evaluate salt and pH effects throughout the folding process. Finally, the computational pKa values were calculated by both methods and presented a good level of agreement with the experiments. This study provides, to our knowledge, new information and a comprehensive description of the electrostatic contribution to protein G stability.


Assuntos
Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Sais/farmacologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Concentração Osmolar , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Prótons , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...